User Tools

Site Tools


calculator:inductance_of_coaxial_cable

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
calculator:inductance_of_coaxial_cable [2025/02/08 09:38] stan_zurekcalculator:inductance_of_coaxial_cable [2025/02/08 17:10] (current) stan_zurek
Line 1: Line 1:
 ==== Calculator of inductance of a straight coaxial cable ==== ==== Calculator of inductance of a straight coaxial cable ====
- 
-{{page>insert/todo}} 
  
 <box 100% #efffef> <box 100% #efffef>
Line 16: Line 14:
 </box> </box>
  
-[[/Inductance]] of a straight [[/coaxial cable]] with round (circular) cross-section (with return current path) can be calculated withe the equation as specified below. +[[/Inductance]] of a straight [[/coaxial cable]] with round (circular) cross-section (with return current path) can be calculated with the the equations as specified below. 
  
 <HTML> <HTML>
Line 38: Line 36:
 var D          = frm.D.value var D          = frm.D.value
 var l          = frm.l.value var l          = frm.l.value
-var result1    "1" +var freq       frm.freq.value 
-var result2    "1" +var rho        frm.rho.value
-var result2    = "3"+
  
 var c_unit     = getSelectedValue(frm.c_unit) var c_unit     = getSelectedValue(frm.c_unit)
Line 46: Line 43:
 var D_unit     = getSelectedValue(frm.D_unit) var D_unit     = getSelectedValue(frm.D_unit)
 var l_unit     = getSelectedValue(frm.l_unit) var l_unit     = getSelectedValue(frm.l_unit)
 +var freq_unit     = getSelectedValue(frm.freq_unit)
  
 var result1_unit    = getSelectedValue(frm.result1_unit) var result1_unit    = getSelectedValue(frm.result1_unit)
 var result2_unit    = getSelectedValue(frm.result2_unit) var result2_unit    = getSelectedValue(frm.result2_unit)
-var result3_unit    = getSelectedValue(frm.result3_unit)+var result31_unit    = getSelectedValue(frm.result31_unit) 
 +var result32_unit    = getSelectedValue(frm.result32_unit) 
  
 const pi = 3.14159265358979 const pi = 3.14159265358979
Line 59: Line 59:
 D = parseFloat(D) D = parseFloat(D)
 l = parseFloat(l) l = parseFloat(l)
 +freq = parseFloat(freq)
  
-c = c * c_unit  //r3 +c = c * c_unit   
-d = d * d_unit  //r2 +d = d * d_unit   
-D = D * D_unit  //r1+D = D * D_unit   
 +l = l * l_unit 
 + 
 +freq = freq * freq_unit
  
 r3 = c/2 r3 = c/2
Line 68: Line 72:
 r1 = D/2 r1 = D/2
  
-l_unit+// T(x) function 
 +// calculate inductance 
 +// Wadell (1.1), * 100 because conversion from cm in Wadell 
 +ur 
 +xSI = pi d * 100 * Math.pow(2*ur*freq*u0*rho,0.5) 
 +Tx = Math.pow((0.873011+0.00186128*xSI)/(1-0.278381*xSI+0.127964*xSI*xSI),0.5) 
 +//Wadell's T(x) with Zurek's correction 
 +TxSZ = Tx + 0.06/Math.pow(xSI+1,6)
  
 // ratio z = r_inner / r_outer, in Grover logz = f (r2/r1) // ratio z = r_inner / r_outer, in Grover logz = f (r2/r1)
Line 74: Line 85:
 logzpoly = 0.1705*z*z*z -0.3979*z*z -0.0214*z +0.25 logzpoly = 0.1705*z*z*z -0.3979*z*z -0.0214*z +0.25
  
-// calculate inductance, Grover with Zurek correction +// (1) Grover (232
-result1 = result1_unit * u0 * l * ( Math.log(d/c) + 2*(d/D)*(d/D)/(1-(d/D)*(d/D) ) * Math.log(D/d) - 3/4 + logzpoly ) / (2 * pi +result1 = result1_unit * u0 * l * ( Math.log(d/c) + TxSZ/4 ) / (2 * pi )
- +
-//result1 = result1_unit * u0 * l * ( Math.log(r1/r3) + 2*(r2/r1)*(r2/r1)/(1-(r2/r1)*(r2/r1) ) * Math.log(r1/r2) - 3/4 + logzpoly ) / (2 * pi )+
  
-// Paul+// (2) Paul/Rosa
 result2 = result2_unit * u0 * l * ( Math.log(d/c) ) / (2 * pi ) result2 = result2_unit * u0 * l * ( Math.log(d/c) ) / (2 * pi )
  
-// Grover as in the book, with discrepancy +// (3.1) Grover (24) as in the book, with discrepancy 
-result3 result3_unit * u0 * l * ( Math.log(D/c) + 2*(d/D)*(d/D)/(1-(d/D)*(d/D) ) * Math.log(D/d) - 3/4 + logzpoly ) / (2 * pi )+result31 result31_unit * u0 * l * ( Math.log(D/c) + 2*(d/D)*(d/D)/(1-(d/D)*(d/D) ) * Math.log(D/d) - 3/4 + logzpoly ) / (2 * pi )
  
 +// (3.2) Grover with Zurek correction
 +result32 = result32_unit * u0 * l * ( Math.log(d/c) + 2*(d/D)*(d/D)/(1-(d/D)*(d/D) ) * Math.log(D/d) - 3/4 + logzpoly ) / (2 * pi )
  
  
Line 90: Line 101:
 result1  = result1.toPrecision(5) result1  = result1.toPrecision(5)
 result2  = result2.toPrecision(5) result2  = result2.toPrecision(5)
-result3  result3.toPrecision(5)+result31  result31.toPrecision(5) 
 +result32  = result32.toPrecision(5)
  
 // display result // display result
 frm.result1.value = result1 frm.result1.value = result1
 frm.result2.value = result2 frm.result2.value = result2
-frm.result3.value = result3+frm.result31.value = result31 
 +frm.result32.value = result32
  
 } }
Line 139: Line 152:
            <OPTION value="1e-3" selected>(mm)</OPTION>            <OPTION value="1e-3" selected>(mm)</OPTION>
         </SELECT> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><br>         </SELECT> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><br>
-   + 
 + 
 +<b>Inner wire resistivity <i>ρ</i></b> = <input type="text" value="17.24e-9" name="rho" size="10" maxlength="10" onChange="calculate_function(this.form)"> (Ω·m)  <br><br> 
 + 
 + 
 +<b>Frequency <i>f</i></b> = <input type="text" value="30" name="freq" size="10" maxlength="10" onChange="calculate_function(this.form)">   
 +        <SELECT name="freq_unit" onChange="calculate_function(this.form)"> 
 +           <OPTION value="1">(Hz)</OPTION> 
 +           <OPTION value="1e3">(kHz)</OPTION> 
 +           <OPTION value="1e6" selected>(MHz)</OPTION> 
 +           <OPTION value="1e9">(GHz)</OPTION> 
 +        </SELECT> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><br>   
                  
 <input type="button" name="Button" value="== Calculate ==" onClick="calculate_function(this.form)"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   <input type="button" name="Button" value="== Calculate ==" onClick="calculate_function(this.form)"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
Line 145: Line 169:
     <br><br>     <br><br>
  
-<b><i>L<sub>DC</sub></i></b> = <input type="text" name="result1" size="10" maxlength="10"> +<b><i>L<sub>AC</sub></i></b> = <input type="text" name="result1" size="10" maxlength="10"> 
           <SELECT name="result1_unit" onChange="calculate_function(this.form)">           <SELECT name="result1_unit" onChange="calculate_function(this.form)">
            <OPTION value="1">(H)</OPTION>            <OPTION value="1">(H)</OPTION>
Line 151: Line 175:
            <OPTION value="1e6" selected>(μH)</OPTION>            <OPTION value="1e6" selected>(μH)</OPTION>
            <OPTION value="1e9">(nH)</OPTION>            <OPTION value="1e9">(nH)</OPTION>
-        </SELECT> <i>[1] Grover + Zurek, eq. (1), uniform current </i> <br><br>+        </SELECT> <i>Eq. (1) Grover, thin shieldskin effect</i>    <br><br> 
  
 <b><i>L<sub>HF</sub></i></b> = <input type="text" name="result2" size="10" maxlength="10">  <b><i>L<sub>HF</sub></i></b> = <input type="text" name="result2" size="10" maxlength="10"> 
Line 159: Line 184:
            <OPTION value="1e6" selected>(μH)</OPTION>            <OPTION value="1e6" selected>(μH)</OPTION>
            <OPTION value="1e9">(nH)</OPTION>            <OPTION value="1e9">(nH)</OPTION>
-        </SELECT> <i>[2] Paul, eq. (2), high frequency limit</i> <br><br>+        </SELECT> <i>Eq. (2) Paul / Rosa / Grover, high frequency limit</i> <br><br>
  
-<hr>+<b><i>L<sub>DC</sub></i></b> = <input type="text" name="result31" size="10" maxlength="10">  
 +          <SELECT name="result31_unit" onChange="calculate_function(this.form)"> 
 +           <OPTION value="1">(H)</OPTION> 
 +           <OPTION value="1e3">(mH)</OPTION> 
 +           <OPTION value="1e6" selected>(μH)</OPTION> 
 +           <OPTION value="1e9">(nH)</OPTION> 
 +        </SELECT> <i>Eq. (3.1) Grover, with possible discrepancy </i> <br><br>
  
-<b><i>L<sub>DC</sub></i></b> = <input type="text" name="result3" size="10" maxlength="10">  +<b><i>L<sub>DC</sub></i></b> = <input type="text" name="result32" size="10" maxlength="10">  
-          <SELECT name="result3_unit" onChange="calculate_function(this.form)">+          <SELECT name="result32_unit" onChange="calculate_function(this.form)">
            <OPTION value="1">(H)</OPTION>            <OPTION value="1">(H)</OPTION>
            <OPTION value="1e3">(mH)</OPTION>            <OPTION value="1e3">(mH)</OPTION>
            <OPTION value="1e6" selected>(μH)</OPTION>            <OPTION value="1e6" selected>(μH)</OPTION>
            <OPTION value="1e9">(nH)</OPTION>            <OPTION value="1e9">(nH)</OPTION>
-        </SELECT> <i>[1] Grover, eq. (3), with discrepancy </i> <br>+        </SELECT> <i>Eq. (3.2Grover, with Zurek's correction</i>  
  
  </form>  </form>
Line 185: Line 217:
 |< 100% >| |< 100% >|
 ^  Inductance of a straight round magnetic wire or conductor  ^^^ ^  Inductance of a straight round magnetic wire or conductor  ^^^
-| // Sources: [1] [[https://isbnsearch.org/isbn/0876645570|Frederick W. Grover, Inductance Calculations: Working Formulas and Tables, ISA, New York, 1982, ISBN 0876645570]] and \\ [2] [[https://isbnsearch.org/isbn/9780470461884|Clayton R. Paul. Inductance: Loop and Partial, Wiley-IEEE Press, 2009, New Jersey, ISBN 9780470461884]] \\ [3] [[https://archive.org/details/selfmu430134419088080unse|Edward B. Rosa, The self and mutual inductance of linear conductors, Department of Commerce and Labor, Bulletin of the Bureau of Standards, Volume 4, 1907-8, Washington, 1908]], {accessed 2025-01-06}//  ||| +| // Sources: [1] [[https://isbnsearch.org/isbn/0876645570|Frederick W. Grover, Inductance Calculations: Working Formulas and Tables, ISA, New York, 1982, ISBN 0876645570]] and \\ [2] [[https://isbnsearch.org/isbn/9780470461884|Clayton R. Paul. Inductance: Loop and Partial, Wiley-IEEE Press, 2009, New Jersey, ISBN 9780470461884]] \\ [3] [[https://archive.org/details/selfmu430134419088080unse|Edward B. Rosa, The self and mutual inductance of linear conductors, Department of Commerce and Labor, Bulletin of the Bureau of Standards, Volume 4, 1907-8, Washington, 1908]], {accessed 2025-01-06} \\ [4] B.C. Wadell, Transmission Line Design Handbook, Artech House, Norwood, 1991, ISBN 0890064369//  ||| 
-|  **(1)** \\ //[1] Grover, eq. (24), p. 42 \\ (see the note below about the possible discrepancy)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{d}{c} \right) + \frac{2· \left( \frac{d}{D} \right) ^2}{1-\left( \frac{d}{D} \right) ^2} ⋅ ln \left( \frac{D}{d} \right) - \frac{3}{4} + ξ_Z   \right) $$  |  (H)  | +|  **(1)** \\ //[1] Grover, eq. (232), p. 280 \\ (assumes infinitely thin shield)//  |  $$ L_{AC} = \frac{μ_0 ⋅ l}{2⋅π} ⋅ \left( ln \left( \frac{d}{c} \right) + \frac{T_{W,Z}(x)}{4} \right) $$  |  (H)  | 
-|  **(2)** \\ //[2Paul, eq. (4.29), p. 132 \\ [3] Rosa, eq. (58), p. 333 \\ (for high frequency limit)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅ln \left( \frac{d}{c} \right)  $$  |  (H)  | +|  **(2)** \\ //[2] Paul, eq. (4.29), p. 132 \\ [3] Rosa, eq. (58), p. 333 \\ [1] Grover, eq. (25), p. 42 (corrected here)  \\ (for high frequency limit)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅ln \left( \frac{d}{c} \right)  $$  |  (H)  | 
-| where: $μ_0$ - [[/magnetic permeability of vacuum]] (H/m), $l$ - wire length (m), $D$ - outer diameter (m) of the shield conductor, $d$ - inner diameter (m) of the shield conductor, $c$ - outer diameter (m) of the solid inner conductor, $ξ_Z$ - Grover's function from Table 4 (unitless) approximated here by S. Zurek with a polynomial function, for ratio $z = d/D$ (unitless):    ||| +|  **(3.1)** \\ //[1] Grover, eq. (24), p. 42 \\ (original, with the discrepancy, see the note below)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{D}{c} \right) + \frac{2· \left( \frac{d}{D} \right) ^2}{1-\left( \frac{d}{D} \right) ^2} ⋅ ln \left( \frac{D}{d} \right) - \frac{3}{4} + ξ_Z   \right) $$  |  (H)  | 
-|  (1.1) \\ Grover's Table 4 with Zurek's approximation by polynomials  |  $$ ξ_Z = 0.1705⋅z^3 - 0.3979⋅z^2 - 0.0214⋅z + 0.25  $$    (unitless)       | +|  **(3.2)** \\ //[1Grover, eq. (24), p. 42 \\ (with Zurek's correction)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{d}{c} \right) + \frac{2· \left( \frac{d}{D} \right) ^2}{1-\left( \frac{d}{D} \right) ^2} ⋅ ln \left( \frac{D}{d} \right) - \frac{3}{4} + ξ_Z   \right) $$  |  (H)  | 
-| //The original Grover's equation appears to be incorrect, with the first logarithm given as $ln(D/c)$ but it is clear from Grover's description that it should be $ln(d/c)$, as this is the limit for high frequency, and as listed for example by Paul [2]. Grover's and Paul's equations are based on radii, but all variables are used as ratios, so diameters can be used directly instead because ratio of radii is equal to the ratio of the corresponding diameters.//   ||+| where: $μ_0$ - [[/magnetic permeability of vacuum]] (H/m), $l$ - wire length (m), $D$ - outer diameter (m) of the shield conductor, $d$ - inner diameter (m) of the shield conductor, $c$ - outer diameter (m) of the solid inner conductor, $x$ - Grover's coefficient (unitless), $T_{W,Z}(x)$ - Wadell's approximation of Grover's function T(x) with Zurek's correction (unitless), $k_{SI}$ - factor scaling from SI units (1/(Ω·m)), $f$ - frequency (Hz), $ρ$ - resistivity of wire (Ω·m),  $ξ_Z$ - Grover's function from Table 4 (unitless) approximated here by S. Zurek with a polynomial function, for ratio $z = c/d$ (unitless):    ||| 
-|  **(3)** \\ //[1] Grover, eq. (24), p. 42 \\ (original, with the discrepancy)//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{D}{c} \right) + \frac{2· \left( \frac{d}{D} \right) ^2}{1-\left( \frac{d}{D} \right) ^2} ⋅ ln \left( \frac{D}{d} \right) - \frac{3}{4} + ξ_Z   \right) $$  |  (H)  | +|  (1.1) \\ Grover's coefficient $x$  |  $$x = π⋅d⋅100⋅k_{SI}⋅ \sqrt{2⋅μ_r⋅μ_0⋅f⋅ρ}  $$  |  (unitless) 
-|  **(4)** \\ //[1] Grover, eq. (232), p. 280 \\ (assumes infinitely thin shield)//  |  $$ L_{AC} = \frac{μ_0 ⋅ l}{2⋅π} ⋅ \left( ln \left( \frac{d}{c} \right) + \frac{T(x)}{4} \right) $$  |  (H)  |+|  (1.2) \\ Wadell's approximation of $T(x)$ with Zurek's correction (this reduces T(x) approximation difference near x = 0 from 6.5 % to below 1 %, [[approximation of Grover Tx|see more]])  |  $$T_{W,Z}(x) = \sqrt{\frac{0.873011 + 0.00186128 ⋅ x}{1 - 0.279381⋅x + 0.127964⋅x^2}} + \frac{0.06}{(x+1)^6} $$  |  (unitless) 
 +|  (3.1) \\ Grover's Table 4 with Zurek's approximation by polynomials ([[Approximation of Grover zeta|see more]])   $$ ξ_Z = 0.1705⋅z^3 - 0.3979⋅z^2 - 0.0214⋅z + 0.25  $$    (unitless)       | 
 +| //The original Grover's equation appears to be incorrect, with the first logarithm given as $ln(D/c)$ but it is clear from Grover's description that it should be $ln(d/c)$, as this is the limit for high frequency, and as listed for example by Paul [2] and Rosa [3]. Grover's and Paul's equations are based on radii, but all variables are used as ratios, so diameters can be used directly insteadbecause ratio of radii is equal to the ratio of the corresponding diameters.//   |||
  
 <box 100% #efffef>↑</box> <box 100% #efffef>↑</box>
calculator/inductance_of_coaxial_cable.1739003886.txt.gz · Last modified: 2025/02/08 09:38 by stan_zurek

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Share Alike 4.0 International
CC Attribution-Share Alike 4.0 International Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki
Legal disclaimer: Information provided here is only for educational purposes. Accuracy is not guaranteed or implied. In no event the providers can be held liable to any party for direct, indirect, special, incidental, or consequential damages arising out of the use of this data.

For information on the cookies used on this site refer to Privacy policy and Cookies.