User Tools

Site Tools


calculator:inductance_of_straight_round_wire

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
calculator:inductance_of_straight_round_wire [2025/01/13 14:22] stan_zurekcalculator:inductance_of_straight_round_wire [2025/02/08 17:13] (current) stan_zurek
Line 1: Line 1:
 ==== Calculator of inductance of a straight round non-magnetic wire ==== ==== Calculator of inductance of a straight round non-magnetic wire ====
  
-|< 100% >| +<box 100% #efffef> 
-| {{/wiki/logo.png?20&nolink}} //See more: [[/Calculators of inductance]].// | +|< 100% 10% 90% >| 
- + {{/calculator/icon_calc.png?60&nolink}}  | //[[user/Stan Zurek]], Calculator of inductance of a straight round non-magnetic wire, Encyclopedia Magnetica//, \\ https://www.e-magnetica.pl/doku.php/calculator/inductance_of_straight_round_wire, {updated: ~~LASTMOD~~, accessed: @YEAR@-@MONTH@-@DAY@} | 
-{{page>insert/calc}}+|  {{/wiki/logo.png?20&nolink}} //See more: [[/Calculators of inductance]]//  |
 +</box>
  
-<WRAP lo right>//[[https://www.e-magnetica.pl/doku.php/calculator/inductance_of_straight_round_wire|[open]]]//</WRAP> 
  
 <box 30% right #f0f0f0> <box 30% right #f0f0f0>
Line 14: Line 14:
 </box> </box>
  
-[[/Inductance]] of a [[/straight wire]] or conductor with round (circular) cross-section can be calculated withe the equations as specified below. +[[/Inductance]] of a [[/straight wire]] or conductor with round (circular) cross-section can be calculated with the equations as specified below. This calculations is for a hypothetical single wire in isolation, without considering the return conductor
  
 <HTML> <HTML>
Line 130: Line 130:
            <OPTION value="1e-2">(cm)</OPTION>            <OPTION value="1e-2">(cm)</OPTION>
            <OPTION value="1e-3" selected>(mm)</OPTION>            <OPTION value="1e-3" selected>(mm)</OPTION>
-        </SELECT> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br>+        </SELECT> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><br>
  
  
Line 221: Line 221:
 </WRAP> </WRAP>
  
-<WRAP lo> +^  [[/Inductance]] of a straight round non-magnetic wire or conductor  ^^^ 
-^  [1] Source: Edward B. Rosa, The self and mutual inductance of linear conductors, Department of Commerce and Labor, Bulletin of the Bureau of Standards, Volume 4, 1907-8, Washington, 1908  ^^^+^ //[1] Source: Edward B. Rosa, The self and mutual inductance of linear conductors, Department of Commerce and Labor, Bulletin of the Bureau of Standards, Volume 4, 1907-8, Washington, 1908//  ^^^
 |  **(1)** \\ //Rosa [1], eq. (9), p. 305//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{l+\sqrt{l^2 + r^2}}{r} \right) + \frac{1}{4} - \frac{\sqrt{l^2 + r^2}}{l} + \frac{r}{l}  \right) $$  |  (H)  | |  **(1)** \\ //Rosa [1], eq. (9), p. 305//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{l+\sqrt{l^2 + r^2}}{r} \right) + \frac{1}{4} - \frac{\sqrt{l^2 + r^2}}{l} + \frac{r}{l}  \right) $$  |  (H)  |
- //[2] Source: F.W. Grover, Inductance Calculations: Working Formulas and Tables, ISA, New York, 1982, ISBN 0876645570//  ^^^+^ //[2] Source: F.W. Grover, Inductance Calculations: Working Formulas and Tables, ISA, New York, 1982, ISBN 0876645570//  ^^^
 |  **(2)** \\ //Grover [2], eq. (7), p. 35//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - \frac{3}{4} \right) $$  |  (H)  | |  **(2)** \\ //Grover [2], eq. (7), p. 35//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - \frac{3}{4} \right) $$  |  (H)  |
- //[3] Source: C.R. Paul. Inductance: Loop and Partial, Wiley-IEEE Press, 2009, New Jersey, ISBN 9780470461884//  ^^^+^ //[3] Source: C.R. Paul. Inductance: Loop and Partial, Wiley-IEEE Press, 2009, New Jersey, ISBN 9780470461884//  ^^^
 |  **(3a)** \\ //Paul [3], full eq. (5.18b), p. 208//    $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( asin \left( \frac{l}{r} \right) - \sqrt{1+ \left (\frac{r}{l} \right)^2} + \frac{r}{l} \right) $$  |  (H)  | |  **(3a)** \\ //Paul [3], full eq. (5.18b), p. 208//    $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( asin \left( \frac{l}{r} \right) - \sqrt{1+ \left (\frac{r}{l} \right)^2} + \frac{r}{l} \right) $$  |  (H)  |
 |  **(3b)** \\ //Paul, [3] simplified eq. (5.18c), p. 208 (for r << l) \\ and for high-frequency (skin depth δ ≈ 0) //  |  $$ L ≈ \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - 1 \right) $$  |  (H)  | |  **(3b)** \\ //Paul, [3] simplified eq. (5.18c), p. 208 (for r << l) \\ and for high-frequency (skin depth δ ≈ 0) //  |  $$ L ≈ \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - 1 \right) $$  |  (H)  |
- //[4] Source: Aebischer H.A., Aebischer B., Improved formulae for the inductance of straight wires. Advanced electromagnetics. 2014 Sep 8;3(1):31-43//  ^^^+^ //[4] Source: Aebischer H.A., Aebischer B., Improved formulae for the inductance of straight wires. Advanced electromagnetics. 2014 Sep 8;3(1):31-43//  ^^^
 |  **(4a)** \\ //King & Prasad [4] eq. (28), p. 34//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - 1 + \frac{r}{l} \right) $$  |  (H)  | |  **(4a)** \\ //King & Prasad [4] eq. (28), p. 34//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{2⋅l}{r} \right) - 1 + \frac{r}{l} \right) $$  |  (H)  |
 |  **(4b)** \\ //Meinke & Gundlach [4], eq. (29), p. 35//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{10⋅l}{4⋅r} \right) - 1 \right) $$  |  (H)  | |  **(4b)** \\ //Meinke & Gundlach [4], eq. (29), p. 35//  |  $$ L = \frac{μ_0 ⋅ l}{2⋅π}⋅\left( ln \left( \frac{10⋅l}{4⋅r} \right) - 1 \right) $$  |  (H)  |
Line 235: Line 235:
 | where: $μ_0$ - [[/permeability of vacuum]] (H/m), $l$ - wire length (m), $r$ - wire radius (m)   ||| | where: $μ_0$ - [[/permeability of vacuum]] (H/m), $l$ - wire length (m), $r$ - wire radius (m)   |||
 | //Note: All these equations are based on the radius r of the wire, and in some other on-line calculators this is mistakenly assumed to be the diameter. In this interactive calculator the correct dimensions are taken into account (diameter in input, radius in calculations).//   ||| | //Note: All these equations are based on the radius r of the wire, and in some other on-line calculators this is mistakenly assumed to be the diameter. In this interactive calculator the correct dimensions are taken into account (diameter in input, radius in calculations).//   |||
-</WRAP>+ 
 +<box 100% #efffef></box> 
 +{{page>insert/paypal}}
  
 {{tag>Calculators Inductance_of_straight_round_wire Inductance_of_straight_round_conductor Circular_conductor Circular_wire}} {{tag>Calculators Inductance_of_straight_round_wire Inductance_of_straight_round_conductor Circular_conductor Circular_wire}}
calculator/inductance_of_straight_round_wire.1736774571.txt.gz · Last modified: 2025/01/13 14:22 by stan_zurek

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Share Alike 4.0 International
CC Attribution-Share Alike 4.0 International Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki
Legal disclaimer: Information provided here is only for educational purposes. Accuracy is not guaranteed or implied. In no event the providers can be held liable to any party for direct, indirect, special, incidental, or consequential damages arising out of the use of this data.

For information on the cookies used on this site refer to Privacy policy and Cookies.